# GenPlan: Generative Sequence Models as **Adaptive Planners**

Akash Karthikeyan, Yash Vardhan Pant Department of Electrical and Computer Engineering, University of Waterloo.



Accepted at AAAI Conference on Artificial Intelligence, 2025

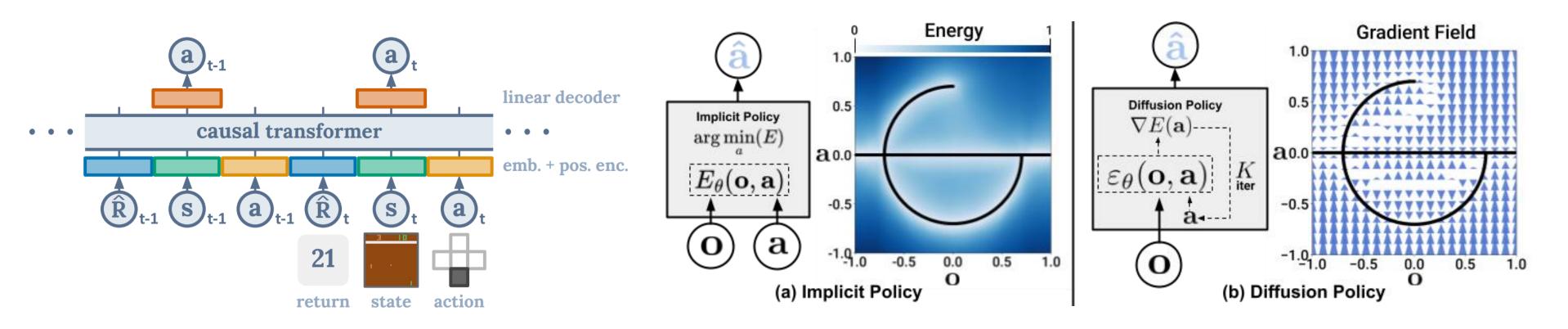


AAAI-25 / IAAI-25 / EAAI-25

# **01 INTRODUCTION**



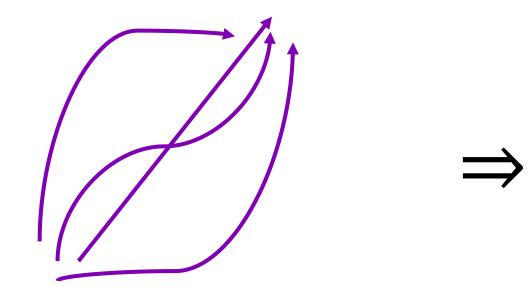
# **Planning as Behavioral Cloning**



#### Decision Transformer [1]Implicit Behavioral Cloning [2a]Diffusion Policy [2b]

[1] L. Chen *et al.*, "Decision Transformer: Reinforcement Learning via Sequence Modeling," in *Advances in Neural Information Processing Systems*, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. W. Vaughan, Eds., Curran Associates, Inc., 2021, pp. 15084–15097.
[2a] P. Florence *et al.*, "Implicit Behavioral Cloning," Sep. 01, 2021, *arXiv*: arXiv:2109.00137. doi: <u>10.48550/arXiv.2109.00137</u>.
[2b] C. Chi *et al.*, "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion," Jun. 01, 2023, *arXiv*: arXiv:2303.04137. doi: <u>10.48550/arXiv.2303.04137</u>.

# Learning alphabet of actions



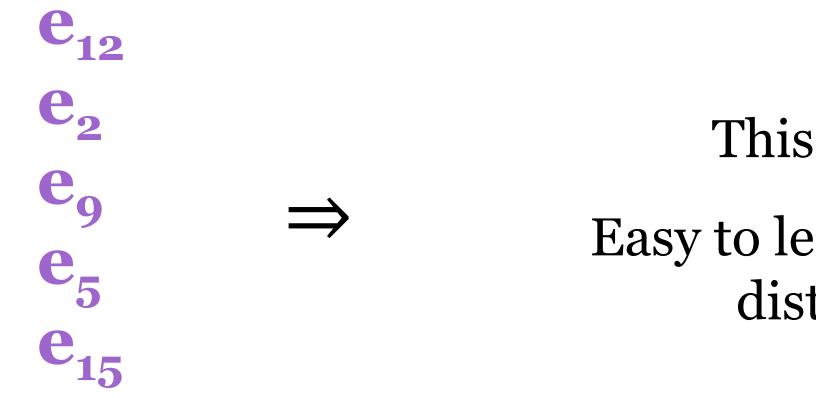
This is continuous

# Hard to learn multi-modal distributions!

Action Dataset



# Learning alphabet of actions



## Latent Actions/ Embeddings

S. Lee, Y. Wang, H. Etukuru, H. J. Kim, N. M. M. Shafiullah, and L. Pinto, "Behavior Generation with Latent Actions," Jun. 28, 2024, *arXiv*: arXiv:2403.03181. N. M. M. Shafiullah, Z. J. Cui, A. Altanzaya, and L. Pinto, "Behavior Transformers: Cloning \$k\$ modes with one stone," Oct. 11, 2022, *arXiv*: arXiv:2206.11251.

# This is discrete

# Easy to learn multi-modal distributions!

# **Planning**?

Problem .....

Prior works often require well-represented train demonstrations, and fail to generalize to harder tasks.

Given .....

Demonstrations of only sub-tasks (partial goals) (noisy, unlabelled, short (temporal) horizon)

Goal .....

- Learn a planner that optimizes at the sequential level.
- Abstract reasoning to generalize across tasks.
- Using simple demonstrations to adapt to harder tasks.





FACULTY OF



#### 2A Adaptation to Harder Task

**2B Unconditional Rollouts** 

**2C Skill Composition / Multi-Modality** 

2D Intermediate Representations for Trajectory Optimization

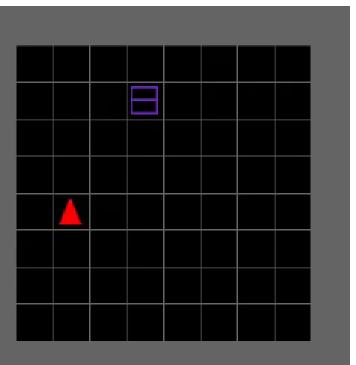
**2E Can we learn all in a sample-efficient manner?** 

# 

GoToLocalS10N10G2

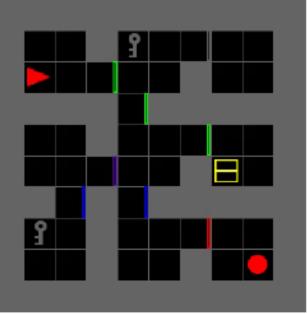
go to the purple box and go to a red box

#### Train Demonstration



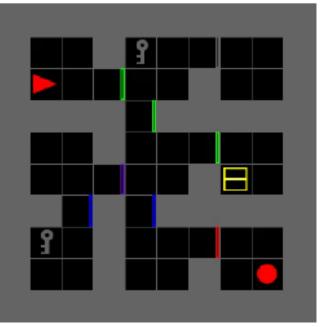
go to the purple box





go to the yellow box

GoToObjMazeS4N3G2



go to the red ball and go to the yellow box

**2A Adaptation to Harder Task** 

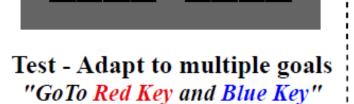
#### **2B Unconditional Rollouts**

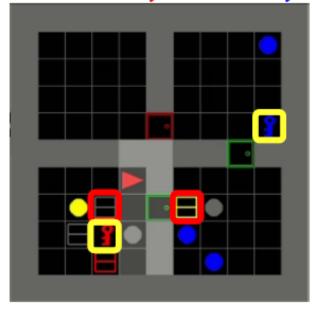
**2C Skill Composition / Multi-Modality** 

2D Intermediate Representations for Trajectory Optimization

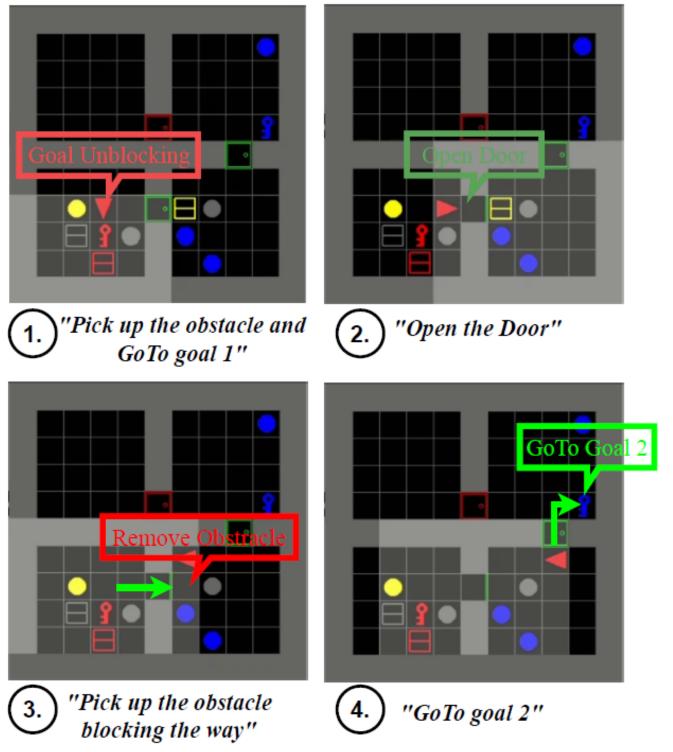
**2E Can we learn all in a sample-efficient manner?** 

# Train Demonstration "GoTo Purple Ball"





#### Test: Sub-Tasks(1-4)





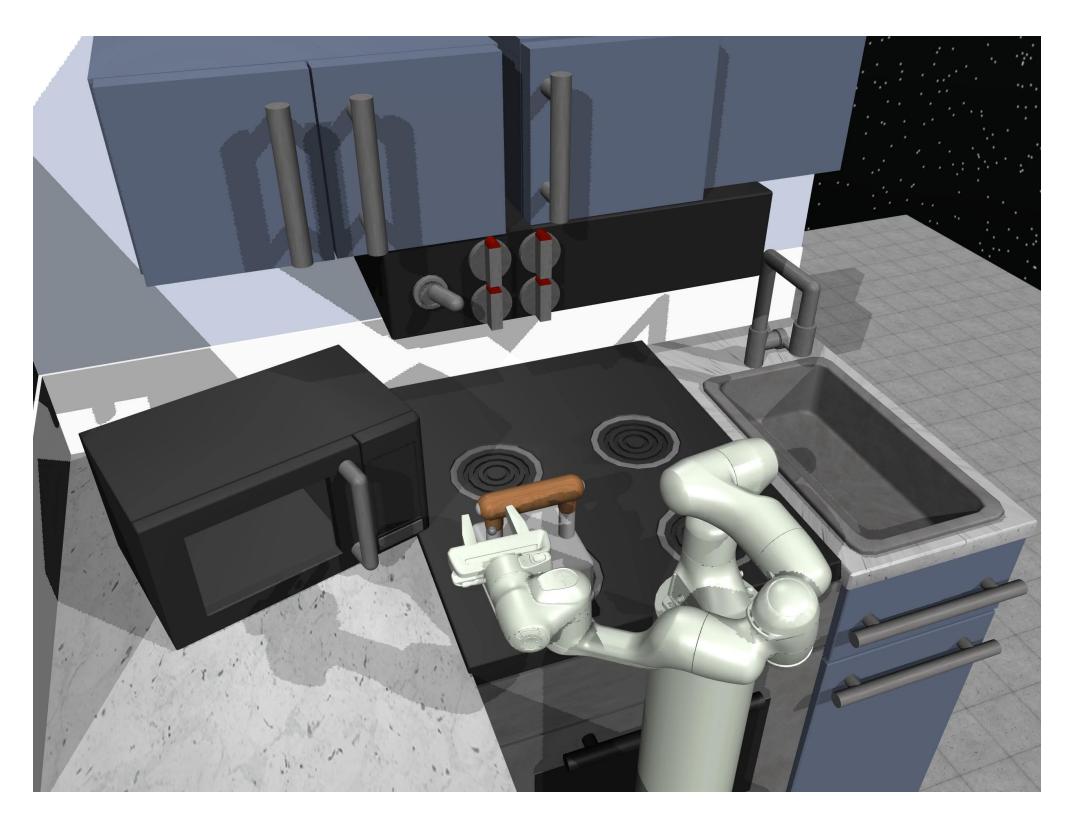
**2A Adaptation to Harder Task** 

**2B Unconditional Rollouts** 

#### 2C Skill Composition / Multi-Modality

2D Intermediate Representations for Trajectory Optimization

**2E Can we learn all in a sample-efficient manner?** 



Gupta, A.; Kumar, V.; Lynch, C.; Levine, S.; and Hausman, K. 2019. *Relay policy learning: Solving long-horizon tasks via imitation and reinforcement learning*. arXiv preprint arXiv:1910.11956



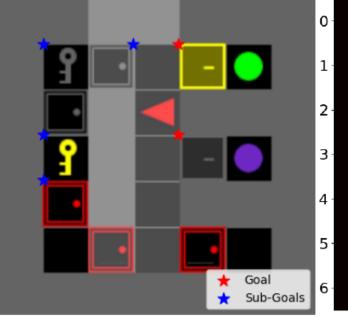
**2A Adaptation to Harder Task** 

**2B Unconditional Rollouts** 

**2C Skill Composition / Multi-Modality** 

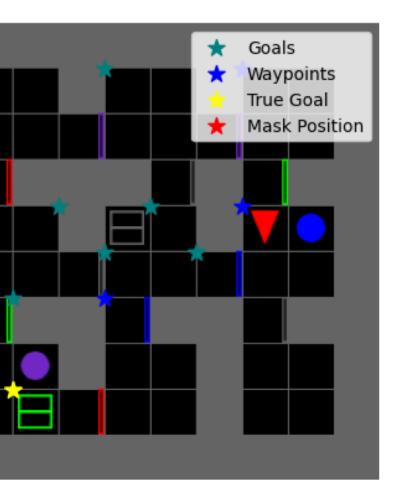
# 2D Intermediate Representations for Trajectory Optimization

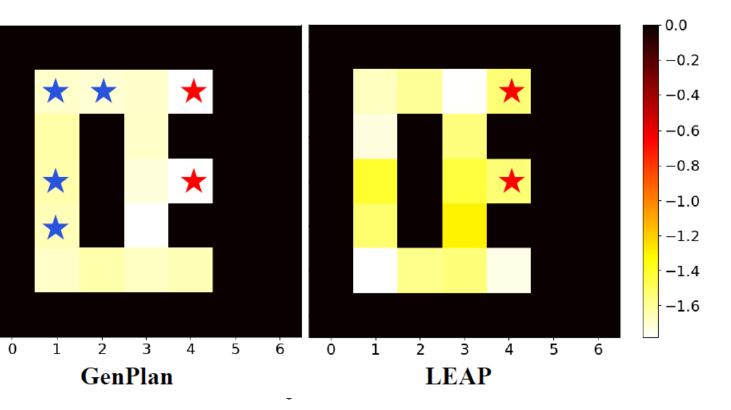
**2E Can we learn all in a sample-efficient manner?** 



Goto Green Ball and Purple Ball







**2A Adaptation to Harder Task** 

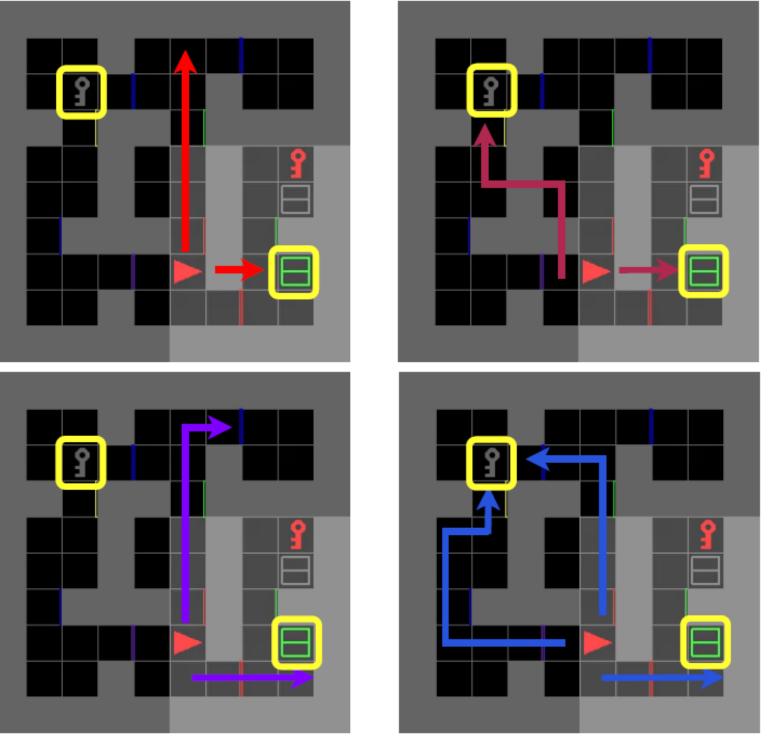
**2B Unconditional Rollouts** 

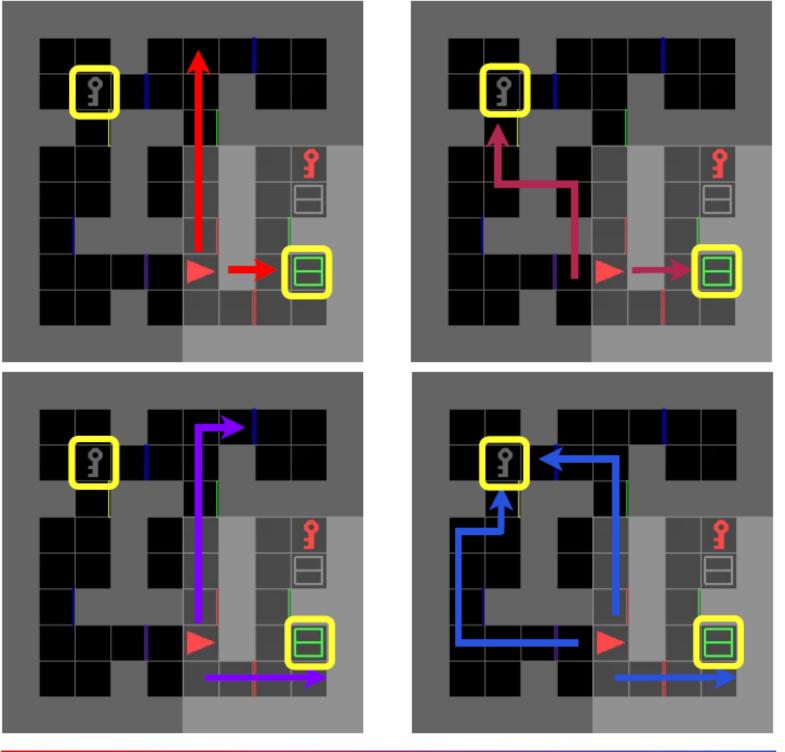
**2C Skill Composition / Multi-Modality** 

**2D Intermediate Representations for Trajectory Optimization** 

#### **2E Can we learn all in a sample-efficient manner?**

\*Note. None of the plans are actually executed until the final minimum energy trajectory is obtained, this is only an illustration of the process





High



FACULTY OF ENGINEERING

#### Energy

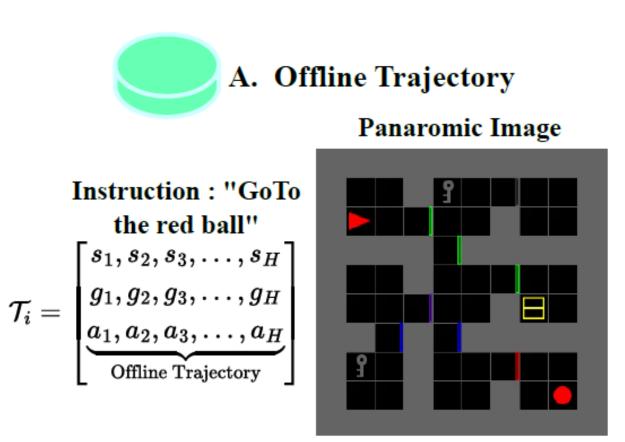
#### Low

UNIVERSITY OF

WATERLOO

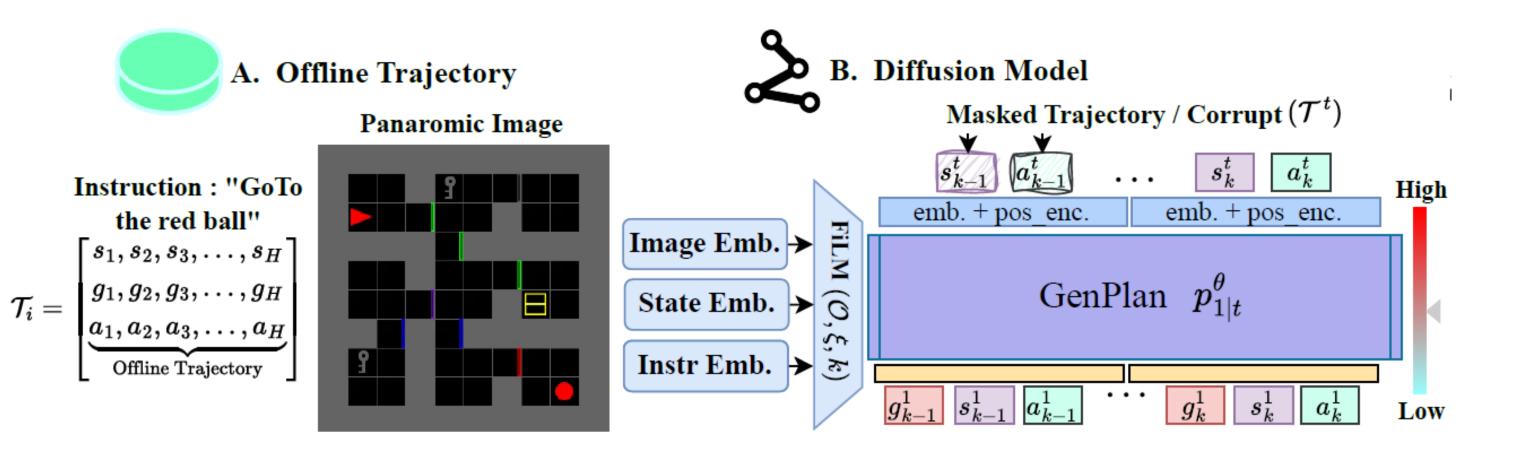
# **03 GENPLAN - METHOD**



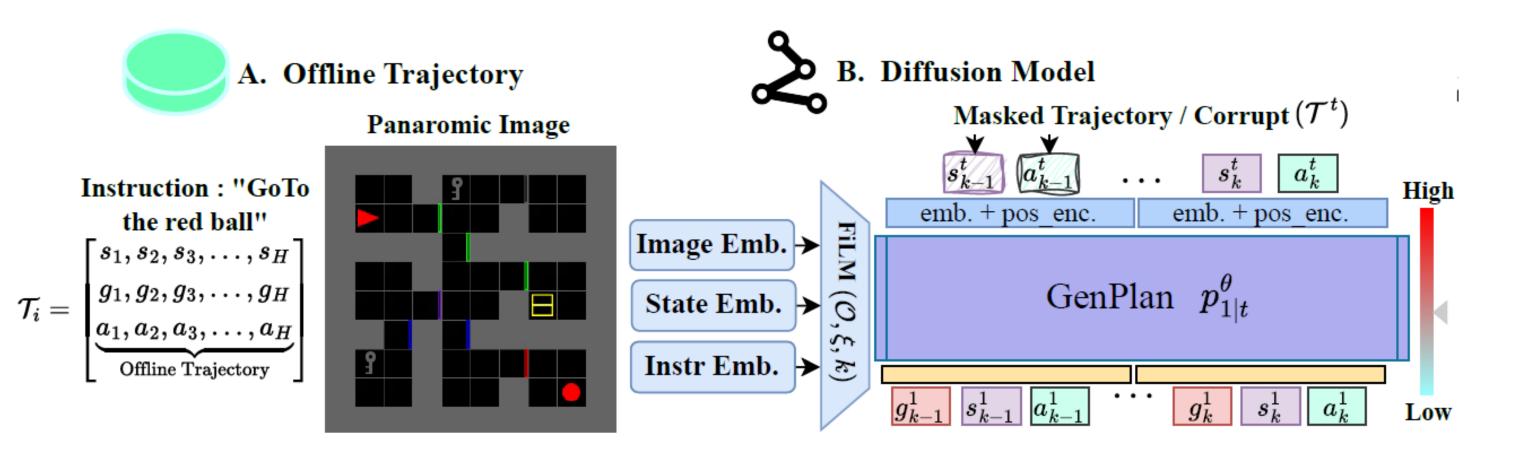


## A. We collect offline demonstration from the environment (# 500)









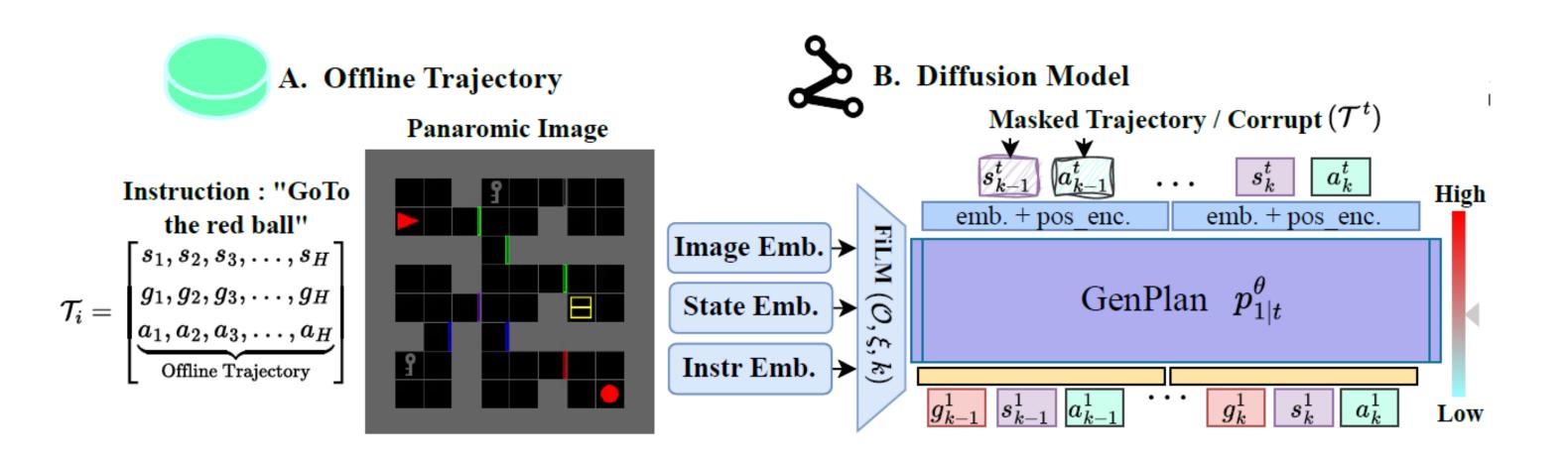
$$\min_{\theta} \mathbb{E}_{\boldsymbol{a}^{0} \sim p_{0}, \boldsymbol{o} \sim \mathcal{D}} \left[ \sum_{k=1}^{H} -\log p_{1|t}^{\theta}(\boldsymbol{a}^{1}|\boldsymbol{a}^{0}, \boldsymbol{o}) \right]$$

s.t. 
$$\mathbb{E}_{\boldsymbol{a}^{0} \sim p_{0}, \boldsymbol{o} \sim \mathcal{D}} \left[ \sum_{k=1}^{H} \mathcal{H}(p_{1|t}^{\theta}(\boldsymbol{a}|\boldsymbol{a}^{0}, \boldsymbol{o})) \right] \geq \beta$$

Energy Objective $\mathcal{E}(oldsymbol{a}) \simeq \mathcal{E}(oldsymbol{a}')$ 

16





$$\min_{\theta} \mathbb{E}_{\boldsymbol{a}^{0} \sim p_{0}, \boldsymbol{o} \sim \mathcal{D}} \left[ \sum_{k=1}^{H} -\log p_{1|t}^{\theta}(\boldsymbol{a}^{1} | \boldsymbol{a}^{0}, \boldsymbol{o}) \right] \quad \text{s.t. } \mathbb{E}_{\boldsymbol{a}^{0} \sim p_{0}, \boldsymbol{o} \sim \mathcal{D}} \left[ \sum_{k=1}^{H} \mathcal{H}(p_{1|t}^{\theta}(\boldsymbol{a} | \boldsymbol{a}^{0}, \boldsymbol{o})) \right] \geq \beta$$

Entropy Lower-bound

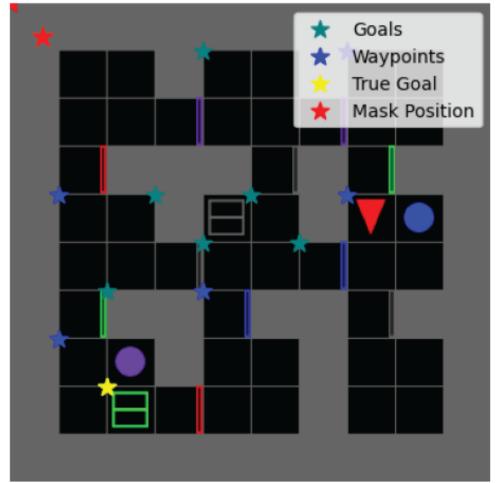
#### **03 GENPLAN - SAMPLING**

Algorithm 2: GenPlan Sampling

1: init  $\tau^0 \sim p_0$ , choice of  $R_t(\tau^t, \cdot | \tau^1)$ ,  $\Delta t = \frac{1}{I_{max}}$ , get  $\boldsymbol{o}$ 



**Goal Generation** 

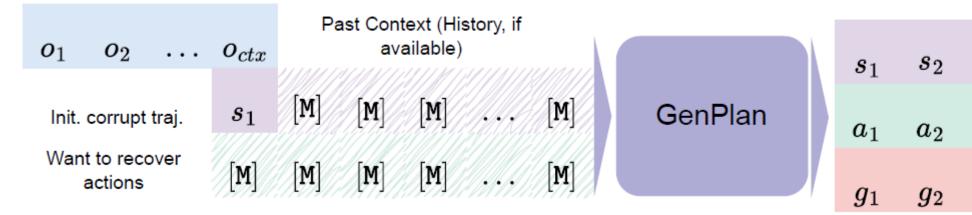




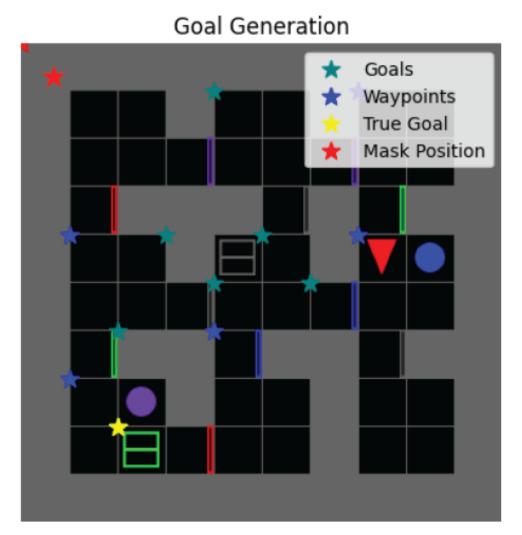
#### **03 GENPLAN - SAMPLING**

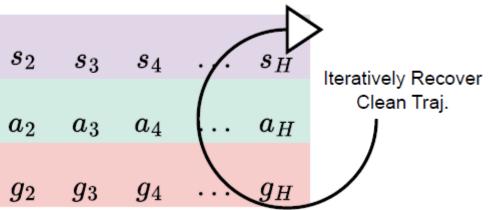
## Algorithm 2: GenPlan Sampling

1: init 
$$\tau^{0} \sim p_{0}$$
, choice of  $R_{t}(\tau^{t}, \cdot | \tau^{1})$ ,  $\Delta t = \frac{1}{I_{max}}$ , get *o*  
2: for  $t \in \{0, \Delta t, 2\Delta t, \dots, 1\}$  do  
3:  $R_{t}^{\theta}(\tau^{t}, \cdot) \leftarrow \mathbb{E}_{p_{1|t}^{\theta}(\tau^{1}|\tau^{t}, o)} \left[R_{t}(\tau^{t}, \cdot | \tau^{1})\right]$   
4:  $\tau^{t+\Delta t} \sim \mathcal{C}\left(\delta\{\tau^{t}, \tau^{t+\Delta t}\} + R_{t}^{\theta}(\tau^{t}, \tau^{t+\Delta t})\Delta t\right)$   
5:  $t \leftarrow t + \Delta t$   
6: end for  
7: return *a*, s, *g* // extract from  $\tau^{1}$ 







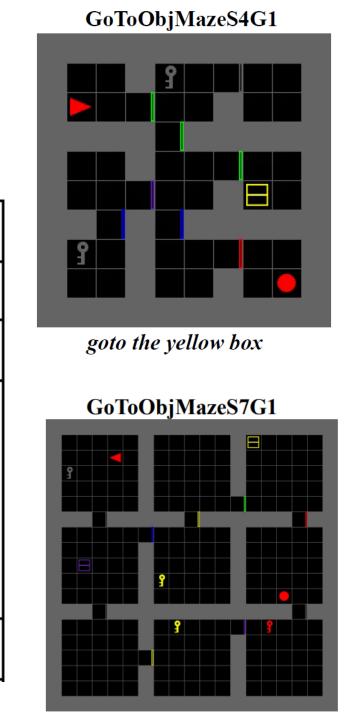




#### **QUANTITATIVE RESULTS - SAME DIFFICULTY AS IN TRAINING (EASY)**

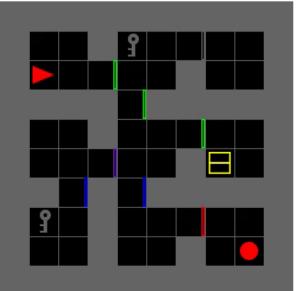
|                         | Uncond. Rollouts |           |                         | Cond. Rollouts |       |  |
|-------------------------|------------------|-----------|-------------------------|----------------|-------|--|
| Env.                    | GenPlan-U        | GenPlan-M | <b>LEAP</b> ⊖ <b>GC</b> | LEAP           | DT    |  |
| Traj. Planning (TP)     |                  |           |                         |                |       |  |
| GoToObjMazeS4G1         | 52.4%            | 62%       | 44%                     | 49.2%          | 46.8% |  |
| GoToObjMazeS4G2         | 38.8%            | 39.6%     | 20%                     | 37.6%          | 35.2% |  |
| GoToObjMazeS7G1         | 45.6%            | 44.8%     | 12%                     | 33.2%          | 40%   |  |
| GoToObjMazeS7G2         | 21.2%            | 19.6%     | 3.6%                    | 4%             | 13.6% |  |
| <b>TP Mean (7.6 ↑</b> ) | 39.5%            | 41.5%     | 19.9%                   | 31%            | 33.9% |  |

**LEAP -** Chen, H.; Du, Y.; Chen, Y.; Tenenbaum, J. B.; and Vela, P. A. Planning with Sequence Models through Iterative Energy Minimization. In ICLR 2023. **DT -** Chen, L.; Lu, K.; Rajeswaran, A.; Lee, K.; Grover, A.; Laskin, M.; Abbeel, P.; Srinivas, A.; and Mordatch, I.Decision Transformer: Reinforcement Learning via Sequence Modeling. In Advances in Neural Information Processing Systems 2021, volume 34, 15084–15097.



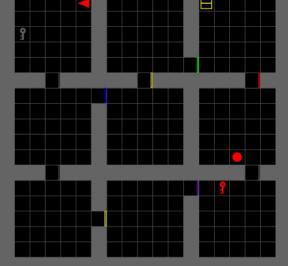
go to the red key

GoToObjMazeS4G2



go to the yellow box and red



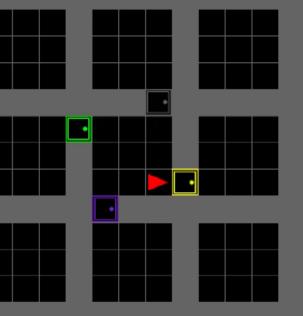


go to the red key and go to the yellow box

#### **QUANTITATIVE RESULTS – INSTRUCTION COMPLETION**

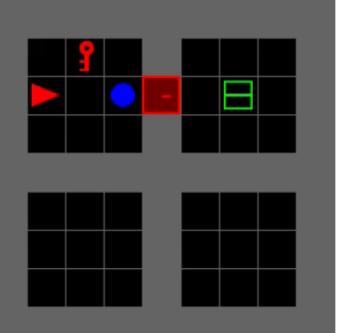
|                        | Uncond. Rollouts |       |         | <b>Cond. Rollouts</b> |       |  |
|------------------------|------------------|-------|---------|-----------------------|-------|--|
| Env.                   | GP-U             | GP-M  | LEAP⊖GC | LEAP                  | DT    |  |
| Instr. Completion (IC) |                  |       |         |                       |       |  |
| MazeClose              | 42.8%            | 48.4% | 18%     | 38.8%                 | 40%   |  |
| DoorsOrder             | 40.8%            | 35.2% | 11.2%   | 36.4%                 | 40.8% |  |
| BlockUn                | 13.2%            | 16%   | 0%      | 0.8%                  | 0%    |  |
| KeyCorS3R3             | 11.6%            | 17.6% | 0%      | 0.4%                  | 3.6%  |  |
| IC (8.2 <sup>†</sup> ) | 27.1%            | 29.3% | 7.25%   | 19.1%                 | 21.1% |  |

#### DoorsOrder



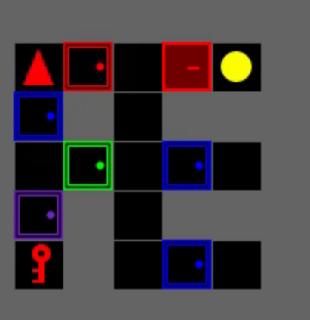
open the green door, then open

#### BlockUnlock

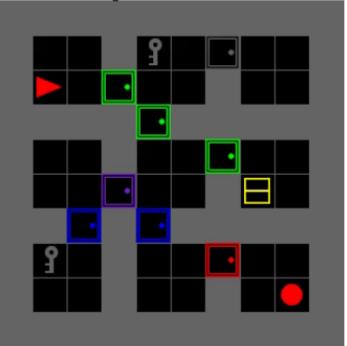


#### go to the box

#### KeyCorridorS3R3



#### GoToObjMazeS4G1Close



go to the ball

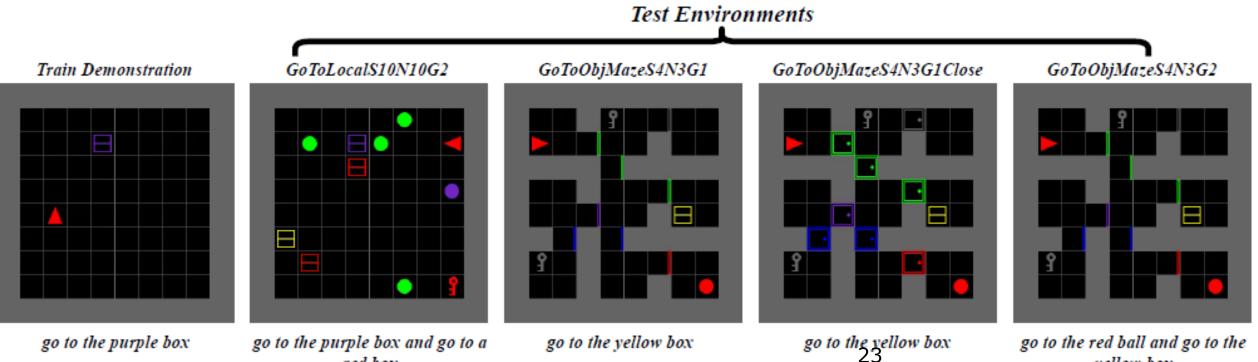
go to the yellow box



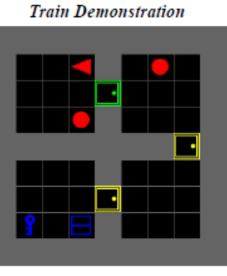
#### **QUANTITATIVE RESULTS – ADAPTIVE PLANNING**

red box

|                          | Unconditional Rollouts |           |                         |                           | <b>Conditional Rollouts</b> |        |
|--------------------------|------------------------|-----------|-------------------------|---------------------------|-----------------------------|--------|
| Environment              | GenPlan-U              | GenPlan-M | <b>LEAP</b> ⊖ <b>GC</b> | $LEAP \oplus \mathcal{H}$ | LEAP                        | DT     |
| Adaptive Planning (AP)   |                        |           |                         |                           |                             |        |
| GoToLocalS10N10G2        | 82.4%                  | 88%       | 76%                     | 69.2%                     | 78%                         | 25.6%  |
| GoToObjMazeS4N3G1        | 56%                    | 62%       | 44.8%                   | 52%                       | 48%                         | 24%    |
| GoToObjMazeClose         | 31.2%                  | 34.8%     | 10%                     | 16.4%                     | 10%                         | 8.8%   |
| GoToObjMazeS4G2          | 28.8%                  | 34.8%     | 14%                     | 21.2%                     | 18.4%                       | 3.6%   |
| GoToSeqS5R2Un            | 35.6%                  | 42%       | 29.2%                   | 30.8%                     | 38%                         | 29.2%  |
| <b>AP Mean (13.84</b> ↑) | 46.8%                  | 52.32%    | 34.8%                   | 37.92%                    | 38.48%                      | 18.24% |

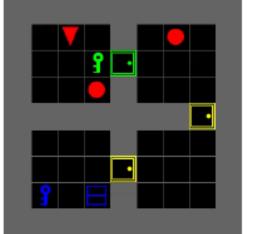


yellow box



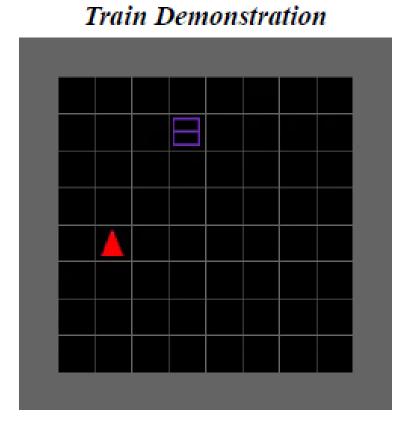
go to a box and go to the blue key

Test Environment GoToSeqS5R2Un



go to a box and go to the blue key

#### **STATE COVERAGE - ADAPTIVE PLANNING**



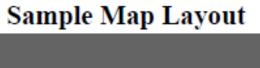
go to the purple box

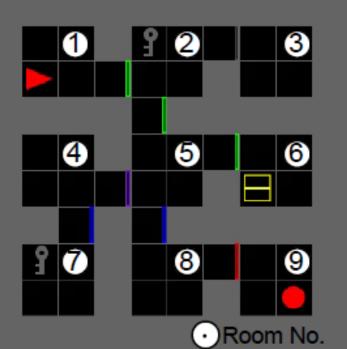
We evaluate the performance in harder tasks



FACULTY OF ENGINEERING

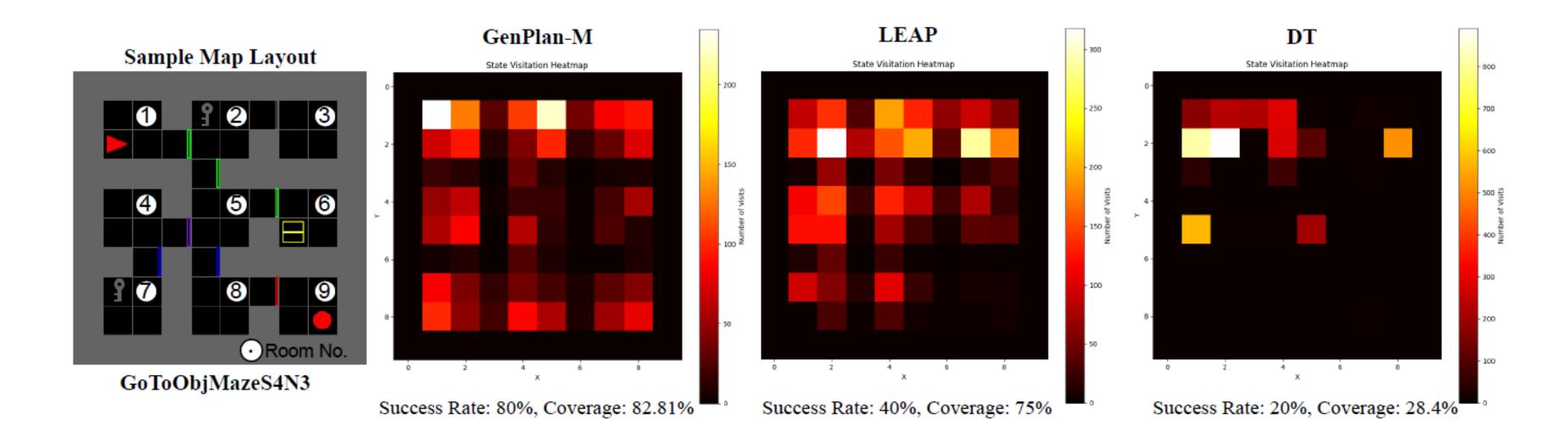






GoToObjMazeS4N3

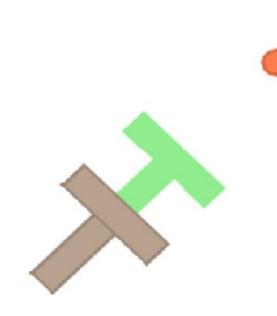
#### **STATE COVERAGE - ADAPTIVE PLANNING**

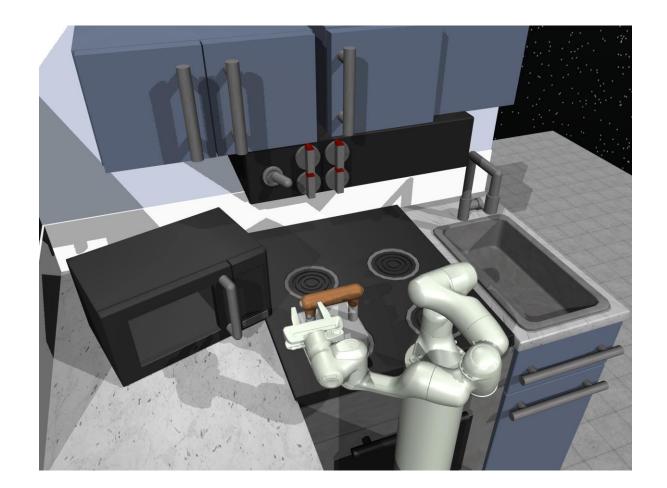


**LEAP -** Chen, H.; Du, Y.; Chen, Y.; Tenenbaum, J. B.; and Vela, P. A. Planning with Sequence Models through Iterative Energy Minimization. In ICLR 2023. **DT -** Chen, L.; Lu, K.; Rajeswaran, A.; Lee, K.; Grover, A.; Laskin, M.; Abbeel, P.; Srinivas, A.; and Mordatch, I.Decision Transformer: Reinforcement Learning via Sequence Modeling. In Advances in Neural Information Processing Systems 2021, volume 34, 15084–15097.

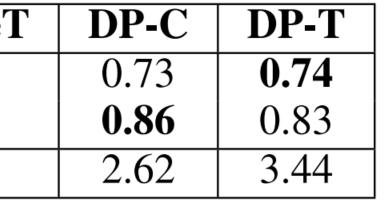
#### ADAPTATION TO CONTINUOUS TASKS

| Env     | Metric         | GenPlan-M | VQ-Be |
|---------|----------------|-----------|-------|
| PushT   | Final Coverage | 0.73      | 0.7   |
|         | Max Coverage   | 0.77      | 0.73  |
| Kitchen | # Tasks        | 3.40      | 3.66  |









### **05 CONCLUSION** TAKEAWAYS

- We propose GenPlan, an energy-flow-based planner that learns annealed energy landscapes and uses DFM sampling to iteratively recover plans.
- Through simulation studies, we demonstrate how joint energy-based denoising improves performance in complex and long-horizon tasks.

#### **FUTURE WORK**

- In real-time scenarios, the inherent distribution tend to evolve and is dynamic. To address it, we plan to ulletextend GenPlan with an online fine-tuning stage via hindsight experience replay [1].
- The energy model as a denoising planner [2] can be extended to sample from pretrained masking model ulletto improve sampling quality.

[1] Q. Zheng, A. Zhang, and A. Grover, "Online Decision Transformer," Jul. 13, 2022, arXiv: arXiv:2202.05607. doi: 10.48550/arXiv.2202.05607. [2] S. Liu et al., "Think While You Generate: Discrete Diffusion with Planned Denoising," Oct. 08, 2024, arXiv: arXiv:2410.06264. doi: 10.48550/arXiv.2410.06264.



# Thank You for Listening!

