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Planning as Behavioral Cloning
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This is continuous

Hard to learn multi-modal 
distributions!

Action Dataset

⇒
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This is discrete

Easy to learn multi-modal 
distributions!

⇒

Latent Actions/ Embeddings
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Planning ? 
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Problem …..

Prior works often require well-represented train demonstrations, and fail to 

generalize to harder tasks. 

Goal …..

• Learn a planner that optimizes at the sequential level.

• Abstract reasoning to generalize across tasks.

• Using simple demonstrations to adapt to harder tasks. 

Given …..

Demonstrations of only sub-tasks (partial goals) 

(noisy, unlabelled, short (temporal) horizon)   
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02  MOTIVATION AND HIGHLIGHTS

2A Adaptation to Harder Task

2B Unconditional Rollouts

2C Skill Composition / Multi-Modality

2D Intermediate Representations for Trajectory 
Optimization

2E Can we learn all in a sample-efficient manner? 
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2A Adaptation to Harder Task

2B Unconditional Rollouts

2C Skill Composition / Multi-Modality

2D Intermediate Representations for Trajectory 
Optimization

2E Can we learn all in a sample-efficient manner? 

*Note. None of the plans are actually executed until the final 

minimum energy trajectory is obtained, this is only an 

illustration of the process 12
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03 GENPLAN - METHOD
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03 GENPLAN

A. We collect offline demonstration from the environment (# 500) 
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Energy Objective
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Entropy Lower-bound
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04 RESULTS AND DISCUSSION

QUANTITATIVE RESULTS – SAME DIFFICULTY AS IN TRAINING (EASY)
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QUANTITATIVE RESULTS – INSTRUCTION COMPLETION
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QUANTITATIVE RESULTS – ADAPTIVE PLANNING
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We evaluate the performance in harder tasks

STATE COVERAGE – ADAPTIVE PLANNING
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STATE COVERAGE – ADAPTIVE PLANNING
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ADAPTATION TO CONTINUOUS TASKS
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05 CONCLUSION
TAKEAWAYS

FUTURE WORK
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• We propose GenPlan, an energy-flow-based planner that learns annealed energy landscapes and uses 

DFM sampling to iteratively recover plans.

• Through simulation studies, we demonstrate how joint energy-based denoising improves performance 

in complex and long-horizon tasks.

• In real-time scenarios, the inherent distribution tend to evolve and is dynamic. To address it, we plan to 

extend GenPlan with an online fine-tuning stage via hindsight experience replay [1].

• The energy model as a denoising planner [2] can be extended to sample from pretrained masking model 

to improve sampling quality. 
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Thank You for Listening!
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